Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Int J Mol Sci ; 24(1)2022 Dec 25.
Article in English | MEDLINE | ID: covidwho-20243838

ABSTRACT

Diffuse parenchymal lung diseases (DPLD) or Interstitial lung diseases (ILD) are a heterogeneous group of lung conditions with common characteristics that can progress to fibrosis. Within this group of pneumonias, idiopathic pulmonary fibrosis (IPF) is considered the most common. This disease has no known cause, is devastating and has no cure. Chronic lesion of alveolar type II (ATII) cells represents a key mechanism for the development of IPF. ATII cells are specialized in the biosynthesis and secretion of pulmonary surfactant (PS), a lipid-protein complex that reduces surface tension and minimizes breathing effort. Some differences in PS composition have been reported between patients with idiopathic pulmonary disease and healthy individuals, especially regarding some specific proteins in the PS; however, few reports have been conducted on the lipid components. This review focuses on the mechanisms by which phospholipids (PLs) could be involved in the development of the fibroproliferative response.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Pulmonary Surfactants , Humans , Pulmonary Surfactants/therapeutic use , Pulmonary Surfactants/metabolism , Phospholipids , Lung/pathology , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/pathology
2.
Curr Med Chem ; 29(3): 526-590, 2022.
Article in English | MEDLINE | ID: covidwho-2141212

ABSTRACT

Pulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome. This paper reviews the main biophysical concepts of surfactant activity and its inactivation mechanisms, and describes the past, present and future roles of surfactant replacement therapy, focusing on the exogenous surfactant preparations marketed worldwide and new formulations under development. The closing section describes the pulmonary surfactant in the context of drug delivery. Thanks to its peculiar composition, biocompatibility, and alveolar spreading capability, the surfactant may work not only as a shuttle to the branched anatomy of the lung for other drugs but also as a modulator for their release, leading to innovative therapeutic avenues for the treatment of several respiratory diseases.


Subject(s)
Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Biocompatible Materials/therapeutic use , Drug Delivery Systems , Humans , Infant, Newborn , Lung , Pulmonary Surfactants/therapeutic use , Respiratory Distress Syndrome, Newborn/drug therapy
3.
Biomed J ; 45(4): 615-628, 2022 08.
Article in English | MEDLINE | ID: covidwho-2060465

ABSTRACT

The lives of thousands premature babies have been saved along the last thirty years thanks to the establishment and consolidation of pulmonary surfactant replacement therapies (SRT). It took some time to close the gap between the identification of the biophysical and molecular causes of the high mortality associated with respiratory distress syndrome in very premature babies and the development of a proper therapy. Closing the gap required the elucidation of some key questions defining the structure-function relationships in surfactant as well as the particular role of the different molecular components assembled into the surfactant system. On the other hand, the application of SRT as part of treatments targeting other devastating respiratory pathologies, in babies and adults, is depending on further extensive research still required before enough amounts of good humanized clinical surfactants will be available. This review summarizes our current concepts on the compositional and structural determinants defining pulmonary surfactant activity, the principles behind the development of efficient natural animal-derived or recombinant or synthetic therapeutic surfactants, as well as a the most promising lines of research that are already opening new perspectives in the application of tailored surfactant therapies to treat important yet unresolved respiratory pathologies.


Subject(s)
Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Respiratory Distress Syndrome , Animals , Humans , Infant, Newborn , Pulmonary Surfactants/chemistry , Pulmonary Surfactants/therapeutic use , Respiratory Distress Syndrome, Newborn/drug therapy , Surface-Active Agents/pharmacology , Surface-Active Agents/therapeutic use
4.
Front Immunol ; 13: 842453, 2022.
Article in English | MEDLINE | ID: covidwho-1855354

ABSTRACT

Pulmonary surfactant constitutes an important barrier that pathogens must cross to gain access to the rest of the organism via the respiratory surface. The presence of pulmonary surfactant prevents the dissemination of pathogens, modulates immune responses, and optimizes lung biophysical activity. Thus, the application of pulmonary surfactant for the treatment of respiratory diseases provides an effective strategy. Currently, several clinical trials are investigating the use of surfactant preparations to treat patients with coronavirus disease 2019 (COVID-19). Some factors have been considered in the application of pulmonary surfactant for the treatment COVID-19, such as mechanical ventilation strategy, timing of treatment, dose delivered, method of delivery, and preparation utilized. This review supplements this list with two additional factors: accurate measurement of surfactants in patients and proper selection of pulmonary surfactant components. This review provides a reference for ongoing exogenous surfactant trials involving patients with COVID-19 and provides insight for the development of surfactant preparations for the treatment of viral respiratory infections.


Subject(s)
COVID-19 Drug Treatment , Pulmonary Surfactants , Humans , Lung , Pulmonary Surfactants/pharmacology , Pulmonary Surfactants/therapeutic use , Respiration, Artificial/methods , Surface-Active Agents/pharmacology , Surface-Active Agents/therapeutic use
6.
Front Immunol ; 12: 730022, 2021.
Article in English | MEDLINE | ID: covidwho-1468343

ABSTRACT

Pulmonary surfactant is a complex and highly surface-active material. It covers the alveolar epithelium and consists of 90% lipids and 10% proteins. Pulmonary surfactant lipids together with pulmonary surfactant proteins facilitate breathing by reducing surface tension of the air-water interface within the lungs, thereby preventing alveolar collapse and the mechanical work required to breathe. Moreover, pulmonary surfactant lipids, such as phosphatidylglycerol and phosphatidylinositol, and pulmonary surfactant proteins, such as surfactant protein A and D, participate in the pulmonary host defense and modify immune responses. Emerging data have shown that pulmonary surfactant lipids modulate the inflammatory response and antiviral effects in some respiratory viral infections, and pulmonary surfactant lipids have shown promise for therapeutic applications in some respiratory viral infections. Here, we briefly review the composition, antiviral properties, and potential therapeutic applications of pulmonary surfactant lipids in respiratory viral infections.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Lipids/therapeutic use , Lung/drug effects , Pulmonary Surfactants/therapeutic use , SARS-CoV-2/pathogenicity , Animals , Antiviral Agents/adverse effects , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions , Humans , Lipids/adverse effects , Lung/immunology , Lung/virology , Pulmonary Surfactants/adverse effects , SARS-CoV-2/immunology
7.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: covidwho-1408530

ABSTRACT

Acute respiratory distress syndrome (ARDS) related to SARS-CoV-2 infection has some unusual characteristics that differentiate it from the pathophysiology described in the more 'typical' ARDS. Among multiple hypotheses, a close similarity has been suggested between COVID-19 ARDS and neonatal respiratory distress syndrome (RDS). With this opinion paper, we investigated the pathophysiological similarities between infant respiratory diseases (RDS and direct neonatal ARDS (NARDS)) and COVID-19 in adults. We also analysed, for the first time, similarities in the response to exogenous surfactant administration in terms of improved static compliance in RDS and direct NARDS, and adult COVID-19 ARDS. In conclusion, we believe that if the pathological processes are similar both from the pathophysiological point of view and from the response in respiratory mechanics to a recruitment treatment such as surfactant, perhaps the latter could be considered a plausible option and lead to recruitment in clinical trials currently ongoing on patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Pulmonary Surfactants , Respiratory Distress Syndrome, Newborn , Respiratory Distress Syndrome , Adult , COVID-19/complications , Humans , Infant, Newborn , Pulmonary Surfactants/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome, Newborn/drug therapy
8.
Med Hypotheses ; 144: 109976, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1386300

ABSTRACT

Several attempts to control the dreadfulness of SARS-CoV-2 are still underway. Based on the literature evidences we have speculated a prospective contemporary remedy, which was categorized into Specificity, Remedy, and a Conveyor. In which, pros and cons were discussed and inferred the possible alternatives. (a) Specificity: Implicit to express the ACE2 receptors in conveyor cells to deceive SARS-CoV-2 frompreponetargets. (b) Remedy: As depletion of pulmonary surfactants causes strong acute respiratory distress syndrome, we propose an entity of a cost-effective artificialsurfactantsystem as a remedy to pulmonary complications. (c) Conveyor: We propose red blood cells (RBCs) as a conveyor with embedded artificial surfactant and protruding ACE2 receptors for the target-specific delivery. Overall we postulate focused insights by employing a combinational contemporary strategy to steer towards a prospective direction on combating SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/therapeutic use , COVID-19/virology , Erythrocytes , Pulmonary Surfactants/therapeutic use , Receptors, Virus/therapeutic use , SARS-CoV-2/physiology , Viral Tropism , Angiotensin-Converting Enzyme 2/administration & dosage , COVID-19/complications , COVID-19/prevention & control , Drug Costs , Drug Delivery Systems , Humans , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/virology , Pulmonary Surfactants/administration & dosage , Pulmonary Surfactants/chemical synthesis , Pulmonary Surfactants/economics , Receptors, Virus/administration & dosage , Respiratory Distress Syndrome/prevention & control
9.
J Mater Chem B ; 9(35): 6988-6993, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1262017

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an RNA virus-based disease that can be deadly. For critically ill patients, mechanical ventilation is an important life-saving treatment. However, mechanical ventilation shows a trade-off between supporting respiratory function and ventilator-induced lung injury (VILI). Surfactant therapy is a medical administration of exogenous surfactant to supplement or replace deficient or dysfunctional endogenous surfactant. Surfactant therapy can be used to postpone or shorten the use of mechanical ventilation to minimize or avoid VILI, because surfactants can reduce surface tension, improve lung compliance, and enhance oxygenation. In addition, nanotechnology can be applied to improve the therapeutic effect and reduce the adverse effects of surfactants. In this perspective, we discussed how nanoparticles deliver surfactants through intravenous injection and inhalation to the expected lung disease regions where surfactants are mostly needed, and discussed the prospects of nanoparticle-mediated surfactant therapy in the treatment of patients with severe COVID-19.


Subject(s)
COVID-19 Drug Treatment , Drug Carriers/chemistry , Nanoparticles/chemistry , Pulmonary Surfactants/therapeutic use , Administration, Inhalation , Animals , Drug Carriers/administration & dosage , Humans , Injections, Intravenous , Lung , Nanoparticles/administration & dosage , Pulmonary Surfactants/administration & dosage , Pulmonary Surfactants/chemistry , SARS-CoV-2
10.
Arch Dis Child Fetal Neonatal Ed ; 107(2): 121-125, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1116250

ABSTRACT

Antenatal corticosteroids undoubtedly save many lives and improve the quality of many others. However, the currently accepted dosage schedule has been in place since 1972, and recent studies have suggested that beneficial effects may be seen with less. Most but not all studies of long-term outcome show no adverse effects. The use of antenatal corticosteroids in women with COVID-19 raises important questions regarding potential risks and benefits. However, currently, most authorities recommend continuing according to published guidelines. With regard to postnatal corticosteroids, alternatives to systemic dexamethasone, the somewhat tainted standard of care, show promise in preventing bronchopulmonary dysplasia without adverse effects. Systemic hydrocortisone and inhaled corticosteroids are of note. The mixture of surfactant and corticosteroids deserves particular attention in the coming years.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , COVID-19/epidemiology , Infant, Premature , Prenatal Exposure Delayed Effects/epidemiology , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/adverse effects , Bronchopulmonary Dysplasia/drug therapy , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Gestational Age , Humans , Infant, Newborn , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Premature Birth/prevention & control , Pulmonary Surfactants/therapeutic use , SARS-CoV-2 , COVID-19 Drug Treatment
11.
Respir Physiol Neurobiol ; 288: 103645, 2021 06.
Article in English | MEDLINE | ID: covidwho-1104240

ABSTRACT

Several pre-clinical and clinical trials show that exogenous pulmonary surfactant has clinical efficacy in inflammatory lung diseases, especially ARDS. By infecting type II alveolar cells, COVID-19 interferes with the production and secretion of the pulmonary surfactant and therefore causes an increase in surface tension, which in turn can lead to alveolar collapse. The use of the pulmonary surfactant seems to be promising as an additional therapy for the treatment of ARDS. COVID-19 causes lung damage and ARDS, so beneficial effects of surfactant therapy in COVID-19-associated ARDS patients are conceivable, especially when applied early in the treatment strategy against pulmonary failure. Because of the robust anti-inflammatory and lung protective efficacy and the current urgent need for lung-supportive therapy, the exogenous pulmonary surfactant could be a valid supportive treatment of COVID-19 pneumonia patients in intensive care units in addition to the current standard of ARDS treatment.


Subject(s)
COVID-19 Drug Treatment , Pulmonary Surfactants/therapeutic use , Respiratory Distress Syndrome/drug therapy , Administration, Inhalation , Biological Products/therapeutic use , COVID-19/physiopathology , Humans , Peptides, Cyclic/therapeutic use , Phospholipids/therapeutic use , Respiratory Distress Syndrome/physiopathology , SARS-CoV-2
12.
Med Hypotheses ; 146: 110412, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1065477

ABSTRACT

The Corona Virus Disease (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) requires a rapid solution and global collaborative efforts in order to define preventive and treatment strategies. One of the major challenges of this disease is the high number of patients needing advanced respiratory support due to the Acute Respiratory Distress Syndrome (ARDS) as the lung is the major - although not exclusive - target of the virus. The molecular mechanisms, pathogenic drivers and the target cell type(s) in SARS-CoV-2 infection are still poorly understood, but the development of a "hyperactive" immune response is proposed to play a role in the evolution of the disease and it is envisioned as a major cause of morbidity and mortality. Here we propose a theory by which the main targets for SARS-CoV-2 are the Type II Alveolar Epithelial Cells and the clinical manifestations of the syndrome are a direct consequence of their involvement. We propose the existence of a vicious cycle by which once alveolar damage starts in AEC II cells, the inflammatory state is supported by macrophage pro-inflammatory polarization (M1), cytokines release and by the activation of the NF-κB pathway. If this theory is confirmed, future therapeutic efforts can be directed to target Type 2 alveolar cells and the molecular pathogenic drivers associated with their dysfunction with currently available therapeutic strategies.


Subject(s)
Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/virology , COVID-19/immunology , COVID-19/virology , Models, Biological , NF-kappa B/immunology , SARS-CoV-2 , Alveolar Epithelial Cells/pathology , Angiotensin-Converting Enzyme 2/physiology , COVID-19/etiology , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Inflammation/immunology , Inflammation/pathology , Liquid Ventilation , Macrophages/immunology , Macrophages/pathology , NF-kappa B/antagonists & inhibitors , Neutrophils/immunology , Neutrophils/pathology , Pandemics , Pulmonary Surfactants/therapeutic use , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction/immunology
13.
Expert Rev Respir Med ; 15(5): 597-608, 2021 05.
Article in English | MEDLINE | ID: covidwho-983822

ABSTRACT

INTRODUCTION: The dramatic impact of COVID-19 on humans worldwide has initiated an extraordinary search for effective treatment approaches. One of these is the administration of exogenous surfactant, which is being tested in ongoing clinical trials. AREAS COVERED: Exogenous surfactant is a life-saving treatment for premature infants with neonatal respiratory distress syndrome. This treatment has also been tested for acute respiratory distress syndrome (ARDS) with limited success possibly due to the complexity of that syndrome. The 60-year history of successes and failures associated with surfactant therapy distinguishes it from many other treatments currently being tested for COVID-19 and provides the opportunity to discuss the factors that may influence the success of this therapy. EXPERT OPINION: Clinical data provide a strong rationale for using exogenous surfactant in COVID-19 patients. Success of this therapy may be influenced by the mechanical ventilation strategy, the timing of treatment, the doses delivered, the method of delivery and the preparations utilized. In addition, future development of enhanced preparations may improve this treatment approach. Overall, results from ongoing trials may not only provide data to indicate if this therapy is effective for COVID-19 patients, but also lead to further scientific understanding and improved treatment strategies.


Subject(s)
COVID-19 Drug Treatment , Pulmonary Surfactants/therapeutic use , Humans , Respiration, Artificial , Treatment Outcome
14.
Med Hypotheses ; 144: 110277, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-765392

ABSTRACT

A hypothesis concerning the potential utility of surfactant supplementation for the treatment of critically ill patients with COVID-19 is proposed, along with a brief summary of the data in the literature supporting this idea. It is thought that surfactant, which is already approved by the Food and Drug Administration for intratracheal administration to treat neonatal respiratory distress syndrome in pre-term infants, could benefit COVID-19-infected individuals by: (1) restoring surfactant damaged by lung infection and/or decreased due to the virus-induced death of the type II pneumocytes that produce it and (2) reducing surface tension to decrease the work of breathing and limit pulmonary edema. In addition, a constituent of surfactant, phosphatidylglycerol, could mitigate COVID-19-induced lung pathology by: (3) decreasing excessive innate immune system stimulation via its inhibition of toll-like receptor-2 and -4 activation by microbial components and cellular proteins released by damaged cells, thereby limiting inflammation and the resultant pulmonary edema, and (4) possibly blocking spread of the viral infection to non-infected cells in the lung. Therefore, it is suggested that surfactant preparations containing phosphatidylglycerol be tested for their ability to improve lung function in critically ill patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19/therapy , Phosphatidylglycerols/therapeutic use , Pulmonary Surfactants/therapeutic use , Adult , Alveolar Epithelial Cells/drug effects , Animals , COVID-19/physiopathology , Cattle , Critical Illness , Humans , Immunity, Innate , Inflammation , Lung/pathology , Models, Theoretical , Pulmonary Edema/immunology , Swine
15.
Med Hypotheses ; 144: 110020, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-608981

ABSTRACT

Pulmonary surfactant is considered to be one of the soaps. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the other enveloped viruses become very weak against surfactant. The SARS virus binds to angiotensin-converting enzyme (ACE2) receptor and causes pneumonia. In the lung, the ACE2 receptor sits on the top of lung cells known as alveolar epithelial type II (AE2) cells. These cells play an important role in producing surfactant. Pulmonary surfactant is believed to regulate the alveolar surface tension in mammalian lungs. To our knowledge, AE2 cells are believed to act as immunoregulatory cells; however, pulmonary surfactant itself has not been believed to act as a defender against the enveloped viruses. This study hypothesises that pulmonary surfactant may be a strong defender of enveloped viruses. Therefore, old coronaviruses merely cause pneumonia. On the contrary, new SARS-CoV-2 can suppress the production of surfactant that binds to the ACE2 of AE2 cells. The coronavirus can survive in the lung tissue because of the exhaustion of pulmonary surfactant.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/prevention & control , COVID-19/physiopathology , Pneumonia, Viral/physiopathology , Pulmonary Surfactants/therapeutic use , SARS-CoV-2 , Ambroxol/therapeutic use , Bromhexine/therapeutic use , Clinical Trials as Topic , Crystallography, X-Ray , Humans , Models, Theoretical , Phagocytosis , Pregnenediones/therapeutic use , Pulmonary Alveoli/metabolism , Surface Tension , Surface-Active Agents , COVID-19 Drug Treatment
16.
J Med Virol ; 92(6): 564-567, 2020 06.
Article in English | MEDLINE | ID: covidwho-142841

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause china epidemics with high morbidity and mortality, the infection has been transmitted to other countries. About three neonates and more than 230 children cases are reported. The disease condition of the main children was mild. There is currently no evidence that SARS-CoV-2 can be transmitted transplacentally from mother to the newborn. The treatment strategy for children with Coronavirus disease (COVID-19) is based on adult experience. Thus far, no deaths have been reported in the pediatric age group. This review describes the current understanding of COVID-19 infection in newborns and children.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Adolescent , Angiotensin-Converting Enzyme 2 , Betacoronavirus/drug effects , COVID-19 , Cell Line , Child , Child, Preschool , China/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/transmission , Disease Management , Fluid Therapy/methods , Humans , Infant , Nitric Oxide/therapeutic use , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/diagnosis , Pneumonia, Viral/drug therapy , Pneumonia, Viral/transmission , Protein Binding , Pulmonary Surfactants/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL